If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121k^2-25=0
a = 121; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·121·(-25)
Δ = 12100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12100}=110$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-110}{2*121}=\frac{-110}{242} =-5/11 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+110}{2*121}=\frac{110}{242} =5/11 $
| 2^x=10/13 | | b+2=A | | k/7-21=-14 | | a^2+a^2=24 | | 6-(4z-5)=5-5z | | -x+15=7+3x-5x | | 21bb=-4 | | 5z+4-3z=10+z+10 | | 4r+36/16=2r-24/2 | | (x^2-6x)(x^2-6x)-64=0 | | -x+15=7+3x+15 | | -4(x-4)=2(x-1 | | 26x-7-16x+2=26x-6-16x+17 | | -6(z-3)=7-5z | | -5=7(10-8x) | | 2^(3x-1)=3^(x-2 | | 500+n=80 | | 7^(x-5)=49^x. | | 3(x+7)=21-3x | | 3x=4x=4x | | 33(2x-5)=2(3x-1)+7 | | 8x=-12x+100 | | 1/2x+5=3/10x | | -x+10=30-2x | | x^2=85.5-5x | | 15+1.75x=7.50+2.25x | | k2-4k-21=0 | | 1=6+u/5 | | 6x=544 | | 3x+7x=24-6x | | 6=j8 | | 45+x=125 |